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Abstract
A non-linear elastic finite element analysis is presented

of the Iosipescu shear specimen tested in the modified
Wyoming fixture for unidirectional graphite/epoxy
composites. It is shown that the non4inear effects due to
specimen-to-)q.xture contact interactions and specimen
geometry on the overall shear response are negligible.

It is proposed that the tangential shear modulus should
be used to characterize the shear resistance of compos-
ite materials with highly non-linear shear response. The
correction factors, which are needed to compensate for
the non-uniformity of the shear stress or strain dlstribu.
tion in the specimen test section for shear modulus
measurement, have to be defined carefully. Strain

contours in the non-linear response ranges are pre-
sented and the initiation of failure In the notch regions

is investigated.

Keywords: non-linearity, numerical analysis, compos-
ite materials, Iosipescu specimen, shear modulus,
correction factors

INTRODUCTION

The analysis of the mechanical behavior of composite
structures requires the stiffness and strength pro-
perties of the constituent composite lamina. Of the
basic composite mechanical properties, the deter-
ruination of the shear modulus and shear strength is
most difficult and controversial. In the last two

decades, a number of shear testing methods for the
measurement of shear modulus and shear strength of
composite lamina have been proposed and
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evaluated. 1-7 Among the existing in-plane shear

tesdng methods, the Iosipescu specimen s loaded in the
modified Wyoming fixture 14° is one of the most
popular testing procedures n by virtue of its unique
features,.!.! Unfortunately, the Iosipeseu shear test is
still less than ideal. The main problems associated
with the Iosipeseu shear test are the non-uniformity of
the stress/strain fields in the specimen test section and
the combined modes of failure initiated in the vicinity
of the notchesJ TM Numerical analyses ts'_6 and
experimental full-field moird interferometry _4 have
been performed to evaluate the non-uniformity of the
stress/strain fields and calculate the corresponding
shear modulus correction factors. _'_6 However, most

of the proposed numerical analyses are linear models
of the specimen, and there are significant dis-
crepancies in the application of the boundary
conditions at the specimen-to,fixture contact
regions, t'l°'l_-'_ Furthermore, the same finite element
model has been applied to different specimen
configurations even though the material orthotropy is
different for specimens with different fiber
oricntationsJ s'ts In a recent study by the authors, TM

equilibrium and compatibility criteria were employed
tO obtain more realistic linear models of the Iosipescu
shear specimens of different fiber orientations and

provide an insight into the uniformity of stress/strain
distributions in the test section.

In practice, the in-plane shear response of
composite materials exhibits severe non-linearity. _9
The non-linearity is attributed to the dominance of the
matrix response in the composite shear behavior,
Deviation from linearity is observed at small shear
strains (e.g. _'_2= 0,3%) for brittle composites and in
the early stages of the deformation process for ductile
composites (e.g. _2-0-1%) (Fig. 1). However, the
non-linear shear response of the Iosipescu specimen
could be partly composed of the geometric and
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Fig. 1. Typical shear-strew/strainresponseof 0° A84/3501-
6 and AS4/PES composites from Iosipescu shear test.

boundary contact non-linearities in addition to the
material non-linear constitutive behavior. For ther-

moplastic or metal-matrix composites, plastic behavior
of the matrix material largely constitutes the

non-linear shear response; therefore, the coupling of
shear and extension stresses/strains cannot be

ignored.
In this research program, the non-linear shear

behavior of ASa/35066 graphite/epoxy composite is
investigated. A preliminary experimental study
showed that the shear response of unidirectional 0*
and 90° AS4/3501-6 specimens was non-linear elastic
until failure. Owing to the brittle nature of the epoxy
resin, the specimen failed before yielding of the
matrix occurred so that there was no evidence of

matrix plasticity. Thus, the arguments of non-linearity
hereafter will be limited to boundary (contact),
geometric and elastic material non-linearities.

To investigate the effect of boundary and geometric
non-linearity, finite element models of the specimen-
to-fixture contacts were employed, The accuracy of
the material shear-stress/strain data in the non-linear

response range were evaluated, In addition, the
non-uniformity of the shear-stress/strain fields in the
non-linear response range was investigated and the
definition of the shear modulus and of shear modulus
correction factors are discussed.

The elastic coefficients including those of the

non-linear shear constitutive equations are needed in
the numerical analysis. Formulations of the in-plane
non-linear shear-stress/strain relations have been
known for some time. Most of the formulations are

based on combined analytical (for example, strain
energy function, elastic-plastic flow rule) and ex-
perimental (off-axis tensile test) treatments, x9'2°Hahn
and Tsai _g developed a non-linear elastic shear-

strain/stress equation for a lamina by adding a
fourth-order constant in the complementary strain
energy density function. However, the derived
third-order shear-strain/stress relation by Hahn and
Tsai does not agree with the current experimental

results, The one-parameter plasticity model of Sun
and Chen :° does not apply to the brittle material
studied in this research, In the current study, an
empirical shear-stress/strain relation obtained from

the corrected experimental shear-stress/strain curve
will be used in the numerical analysis.

FINITE ELEMENT MODELS

The finite element model

When the specimen is secured in the fixture (Fig. 2)
the long and short specimen-to-fixture contact lengths
are about 31.1ram (1.25in.) and 25-4mm (lin.),
respectively, along the groove and wedge surfaces,
(Fig. 3). The distance between the innermost contact
region and the notch axis is 7 ram. In most linear
models, 9`_°'t6"_sthe modeling of the fixture is ignored,
and only the specimen is modeled, In this analysis, the
fixture was modeled as four rectangular rigid bodies in
contact with the specimen (Fig. 3), The boundary

P

Fig,Z. Iosipescu specimen loaded in the modified Wyoming
fixture.
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Fig. 3. Finite element model of the Iosipescu specimen
tested in the modified Wyoming fixture.
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conditions were applied to the four rigid bodies of the
fixture. The fixed part of the fixture was modeled into

two rigid bodies fixed in space; that is, there is no
horizontal and vertical displacement on the fixed part
of the fixture. For the movable portion of the fixture,
the horizontal displacement was constrained, and a

vertical displacement, v-6, was applied. The

magnitude of the vertical displacement on the
movable portion of the fixture was adjusted such that
the shear strain at the specimen center is equivalent to
the failure shear strain obtained from experiment.

Along the specimen-to-fixture contact regions, Coul-
omb friction is assumed. The coefficients of friction in

the specimen-to-fixture contact regions are not known
a priori and are obtained approximately through
numerical iterations.

When load is applied, the movable part of the

fixture (Figs 2 and 3) moves downward and pushes the

fight huff of the specimen downward along the upper
specimen-to-fixture contact region. Thus, load is
transferred only from the f_ure to the specimen

along the upper fixture-to-specimen contact region of
the movable portion of the fixture. As the load

increases, the specimen may progressively separate
h_om the fixture t5 and the length of the contact region

may be reduced. The change of the specimen-to-
fixture contact region in the loading process of the

specimen is called boundary non-lineatity due to the
fact that the contact lengths may not be the same at
different shear strains of the shear response.

A two-dimensional, plane stress finite element

analysis was performed. The finite element mesh in
this non-linear analysis is the same as that used in Ref.

15. Along the specimen-to-fixture contact region,
contact elements are used. This model had 1468
constantstrainelements and 60 contactelements.

From the preliminaryexperimentalstudy,it was
found that the specimens failed with smalldeforma-

tions and shear strains, typically ?_2< 1.8%.
Therefore, the term geometric non-linearity hereafter
refers to the non-linearity in the shear response due to

the change of specimen geometry.

The constitutive equation
In the non-linear analysis, the most difficult task is the
determination of the non-linear constitutive law for

the material analyzed, Here, the stress/strain
relationships in the longitudinal and transverse
directionsare assumed to be linear.For the shear
behavior,however,a non-linearempiricalconstitutive

law is used. First,a preliminaryexperimentwas

performed.The correctedshear-stress/straincurveis
obtained by plotting the average shear stress against
the corrected shear strain (,_measured shear strain
multiplied by the reciprocal of the linear shear
modulus correctionfactortS).It was found thatthe
constitutiveequationscorrespondingto the modified

shear-stress/strain curves for specimens of 0°, 90° and

0_/90_ fiber orientations were quadratic functions of
the shear strain for a wide range of graphite-

reinforced plastics, such as AS4/3501-6, IMg/BMI-

PES, and AS4/PEEK.

The Iteration scheme
In the numerical analysis, there are two parameters
which arc not known a priori. These are the
non-linear constitutive equation and the coefficient of
friction in the specimen-to-fixture contact region.

Initially, a modified constitutive equation representing
the corrected shear.stress/strain curve is used and a

very small value of the coefficient of friction is
assumed in the specimen-to-fixture contact region.
Aher the analysis is performed, the simulated average
shear stress, r., plotted against the gage shear strain

(the shear strain calculated over an area equivalent to
that of the gage section of the strain gage rosette), 7a,
is obtained. The simulated shear.stress/strain curves

are compared to those obtained from the experiments.
If the simulated and experimental shear-stress/strain
curves do not agree well, small modifications to the
coefficient of friction and the second-order term of the

constitutive equation are made. The same sequence of

steps is repeated until the best agreement between the
simulated and experimental shear.stress/strain curves
is obtained, It is observed in the simulation that as the
coefficient of friction is increased the stress/strain
curve shows a tendency to become bilinear. That is,
more and more pronounce knee is apparent. The final
valueofthecoefficientoffrictionisachieved when the
simulated shear-stress/strain curve intersects the
material constitutive curve at a shear strain higher
than the knee in the simulated shear-stress/strain

curve.

RESULTS AND DISCUSSION

Comparitlon of the numerical simulation mad
experimental result
After several iterations, the simulated and experimen-
tal shear-stress/strain curves plotted as the average

shear stress, r,, against the gage shear strain, Yt, are
shown in Figs 4(a)-(c) for 0% 90" and 0°/90 _

specimens, respectively. The corresponding
coefficients of friction for tY, 90° and 0°/90 ° specimens

are O-3, 0, and 0-2, respectively. For the modified
shear constitutive relationship, _ - 5,0y - 96.072, the
shear-stress/strain curves of the numerical simulations
and the experimental results agree very well for 0° and
90' specimens (Figs 4(a) and (b)). For the 0°

specimen, the linear and quadratic terms of the
numericalsimulatedr.-y t curveareabout 0.7% and
6% different from the coefficients of the experimental

_,-7s curve. For the 9{Y specimen, the differences in
the linear and quadratic terms between numerical
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l_. 4. Shear-stress/strain curves plotted as averas¢ shear

stress, r,, against gage shear strain, y,, obtained from

numerical simulations and experimental results for (a) _,
(b) 90" and (c) 00/90* specimens,

simulated and experimental r*-Ys curves are about
3% and 9%, respectively. For the 0*/90* specimen,
poor agreement was obtained when the shear strain is
larger than 1-2% (Fig. 4(c)). The linear and quadratic
terms in the numerical simulation differ from those
from the experimental _r,-ys curves by about 5% and
33%, respectively.

The large difference in the second..order terms for
both 0* and 90* specimens may be caused by the
variation of the coe_icient of friction (non-linear

friction) at higher loads due to the change in surface
topography of the specimen. Nonetheless, these

differences are within experimental data scatter;
therefore, no further interations were attempted. The
lack of agreement in the numerically simulated and
experimental shear-stress/strain curves at large shear
strains for the 0*/90* specimen is attributed to
interlaminar effects which were not included in the

numerical model. The poor agreement between the
numerical and experimental shear-stress/strain curves

can also be attributed to the material heterogeneity
and the damage mechanisms of the cross-ply
specimen. Thus, for accurate simulation of shear

behavior of the cross-ply specimen, a more complex
three-dimensional numerical model is needed. How.

ever, due to the laminate nature of the cross-ply
specimen, the shear-stress/strain response obtained
from the cross-ply specimen cannot be treated as
material response. Therefore, further discussion is
limited to unidirectional composite laminae with 0*
and 90* fiber orientations.

Stm¢tural response venms material response
In order to assess the influence of structural

parameters upon the shear behavior of the Iosipeseu
specimen, shear-stress/strain curves obtained from the

numerical simulation plotted as gage shear stress, rs,
against gage shear strain, Ys, are compared with the
input material constitutive curves (F'igs 5(a) and (b)).
If the output (simulated material behavior) agrees
well with the input (material constitutive equation),
then the structural effects for this specimen geometry.
tested in this particular fixture are negligible, and the
measured shear-stress/strain curve is the true material

response. Conversely, when poor agreement is
obtained, the shear response is specimen geometry.
and fixture dependent (i.e., test method dependent),
and the measured shear-stress/strain data are a

structural property, rather than a material response.
For the 90° specimen, it was found that good
agreement between the output (simulated material
behavior) and the input (material constitutive
response) is obtained. However, for the 0° specimen,
the differences between the numerical simulated _s-Ys
curve and the input constitutive equation increase
with increasing loads. The larger differences between

the numerical simulated rs-Ys curve and the input
constitutive equation at larger loads for 0° specimen
will be discussed in a later section. In general, the 90*
specimen provides better agreement between the
simulated shear response and the material constitutive
response than the 0* specimen.

Force dlslrJbution along the specimen.to-fixture
contact regions
The degree of non-lineari W due to the specimen-to-
fixture contact can be evaluated by comparing the
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Fig. $. Shear-stress/strain curves obtained from numerical
simulations (rt-y_) and material comtitutlve equation (r-y)

for (a) O"and (b) 90"specimens.

force distributions along the specimen-to-fixture
contact regions in the linear and non-linear shear
response ranges, It was found that the lengths of
contact are essentially the same in the linear and
non-linear elastic (close to failure) range for both 0°

and 90° specimens. The distributions of the reaction
forces along the specimen-to-fixture contact regions in
the non-linear shear response range are shown in Figs
6(a) and (b), which are of similar shape to those in the
linear shear response range. _s The reaction force
distributions in the non-linear response range
correspond to shear strains of 1,74% and 1.10%,
which arc the shear strains close to failure for 0° and

90° specimens, respectively. If the lines of action of
the equivalent concentrated loads are determined, as
shown in Fig. 7, it is found that the distances of the
two inner load points, b, and the two outer load

points,a, are essentiallythe same inthe linearand
non-linearshearresponserangesforthe90°specimen.

However. the load pointsvaryslightlyin the linear

(7¢ ,_ 0.029%) and non-linear (ysffil.74%) shear
response ranges for the 0° specimen. The implication
of the fixed equivalent concentrated load points in the
entire shear response range is that the boundary
contactnon-lienarity is insignificant,

The difference in the equivalent concentrated load

points for 0° and 90° specimens is attributed to the
difference in the transverse stiffnesses of the

1S._mm
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II1|_ J
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......... • , -V91P sp_:_lmen at '_ = 'L10%
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Fig, 6, Schematic distributed forces along the specimen-to-
fixture contact regions in the non-linear shear response

rangefor (a) 0° and (b) 90° specimens.
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specimens.In the 90° specimen for which the

transversestiffnessishigh,the distancebetween the
two outer load points is about 60% of that of the 0 °

specimen. Thus thereisabout 40% excess(unneces-

sary)material in the standard (76,2 am, or 3 inch, in
length) 90_ specimen. It has been shown that the
length of the 90° specimen can indeed be reduced _
without loss of accura_ in the shear modulus and
strength measurement.

Effect of frictional forces

In the specimen-to-fixture contact regions, frictional
forces develop after the load is applied. Coulomb
friction froces are proportional to the applied forces.
The coefficients of friction determined from numerical

interactions for 0° and 90° specimens are 0.3 and 0,
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Fig, 8, Simplified schematic diagram of the maxamum
distortion of fibers in the specimen test section in the

nonlinear shear responserange for 0° and 90" specimens.

respectively, The effect of frictional forces on the

shear stress values in the specimen test sections can

also be determined through numerical analysis. It was

found that in the test section of the 0° specimen, the
shear stress, r,, produced by the frictional force is

about 0.49% of P/A (P-applied load, A-cross-

sectional area) when the gage shear strain is 0.028%,

and _, is about 0.9% of P/A when the gage shear

strain is 1.74%. For the 90* specimen, there is no
frictional force induced shear stress because the

coefficient of friction is apparently zero. Thus, the
effect of the frictional forces on the test-section shear

stress is negligible for lY'and 90 ° specimens.

Geometric non-liaearity

In the process of loading, the specimen geometry may

change as the load increases. For the 0° specimen,

assuming that the longitudinal fiber parallel to the
horizontal line cd, where cd is the distance of

unsupported length of the specimen as shown in Fig.
8, remains straight after deformation occurs, the

maximum distortion of the fiber along line cd is 1.04 °

at a gage shear strain y== 1.74%, Similarly, the

maximum distortion angle for a 900 specimen along
ab, the notch axis, is 0.54 ° at a gage shear strain

Ys = 1.'10%. Since the fibers do not remain straight

after deformation occurs the distortion angles are
overestimated. Thus, the effect of geometric non°

lJneafity due to the change of specimen geometry on
the shear response of 0_ and 90 ° specimens is
ne#igible.
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Fig. 9. Shear strain distributions between the notches at
several shear strain values for (a) (Y'and (b) 90 ° specimens.

Shear-stnm/stmin dbtributiom between notches

The shear strain and stress distributions, normalized

with respect to the average shear strain and stress in

the test section, corresponding to several shear strain

and stress values for 0= and 900 specimens,
respectively, are shown in Figs 9 and 10. The shear

strain distributions at all strain values axe essentially

the same. This finding is consistent with the previous
statement that boundary and geometric non-linearities

are negligible. The shear strain distribution across the
notches does not become more uniform with the

increasing load. However, the shear stress distribu-

tions across the test section of 0_ and 90 ° specimens do

flatten out with increasing load (Figs 10(a) and 10(b)).
The flattening of the shear stress distributions across
the test section reflects the non-linear constitutive

nature of the materials analyzed, Thus, as the applied
load increases, the shear stress concentrations for 0 °

and 9if' specimens axe reduced while the shear strain

concentrations remain unchanged.
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Fill, 1O. Shear stress distributions between the notches at
several shear strain values for (a) O"and (b) 90* specimens.

Shear modulus and shear modulus correction fscton
In the characterization of the shear resistance of a

composite material system, secant, chord, and
tangential shear moduli are often used. However, for
material systems with highly non-linear behavior, the
tangentialshear modulus should be used.z: For

example,the tangentialmodulus atthe fiatend of a

highlynon-linearshear-stress/straincurve isnearly
zero.The secantand chord moduli at the strains

correspondingto the fiatend of a shear-stress/strain

curveare,ofcourse,not zero.
In common practice,the shear.stress/straincurve

obtainedfrom experimentisplottedas the average

shearstress,r,,acrossthetestsectionofthespecimen

against the gage shear strain, Ys. Therefore, the
measured tangential shear modulus, G*--d_u/dy_, is
an apparent modulus. To calculate the shear modulus
of the material, either the gage shear strain, _'s, over
the area of a strain gage rosette must be transformed
to the average shear strain, y., across the test section;
or the average shear stress, v,, across the test section
must be transformed to the gage shear stress, _rs. The

transformation factors are called the shear modulus
correction factors. Because the shear stress and shear
strain distributions in the test sections of the 0* and

90* specimens are different, the corresponding shear
modulus correction factors for these two fiber
orientations are not the same. Depending on the
methods of transformation, the correction factor (CF)

is defined as
CF - d_s/dT, (i)

or

CF - dy=/dy. (2)

If the shear behavior is linear, eqn (!) is equivalent to

eqn (2)• In general, the shear-stress/strain curve is
non-linear; therefore, the shear modulus correction
factors calculated from eqns (1) and (2) are not the
same, even for specimens of same fiber orientation.
The shear modulus correction factors using eqn (1) or

(2) plotted against the gage shear strains are shown in
Fig. 11 for 0° and 90 specimens, respectively• Note
that the correction factors calculated using eqn (1) or

(2) are not the same and are not constants for both
fiber orientations. However, from the results of the

preliminary experiments, the condition that the
corrected shear moduli obtained from 0_ and 90°

specimens should be the same is better satisfied only
when eqn (1) is used for the definition of correction
factors. An example is given in Table 1 where the

apparent and corrected shear moduli corresponding to
three shear strain values and using eqns (1) and (2) as
correction factors are presented. Approximately, the
correction factors for AS4/3501-6 graphite/epoxy

using eqn (1) can be expressedas:

0_specimen: CF = 0,8586+ II-85_,=- 22871 (3)

90*specimen: CF - 1.1868- 4"027ys-i-62.0y_ (4)

where CF and )Isare the correctionfactorand the

gageshearstrain,respectively.In Table 1,itisseen
thatthecorrectedshearrnodulifrom the 0°specimen

. at three shear strain values are lower than those from

the 90° specimen even when eqn (t) is used for the

1.2
1

"i 0.8

0.4

0

dt=/d_-90'
-- .-- a?_lm&.90"

o 0.5 1.0 1.5 2.0 2.5 3.O

gage mhmm.rRtratn(%)

Fill. 11. Shear modulus correction factors for 0° and 90 =
specimens.
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Table I. Apparent and corrected tangential shear modull at different shear strains for 0°
and 90° ASd/3S01-6 specimens

GI':(GPa) CF -- dy.ldy. G_'=x dy',Idy. CF - d_s/d_. G,*_x dr./dT_

7, - 0.2%
(Y 5.35 0.884 4.73 0.881 4.72

900 4.13 1-188 4.90 1-179 4-87
y, _- I'0%

0" 3"57 0'872 3'11 0'954 3"44)
90" 3"04 I'197 3"64 I'153 3'51

y.= 1.5%
0Q 2.45 0.864 2.12 0.985 2.42

90" 2.37 1-202 2"85 1,140 2'70

G_'2is the apparent shear modulus.

correction factors. The lower shear moduli of the 0°

specimen are due to its large longitudinal stiffness and

the resulting shear induced in the test section by the

compressive loads which are attenuated away from the
inner Mad points according to Saint-Venant's

principle, t2 Due to this additional shear component,

the measured shear strains from the strain gages

correspond to a shear stress which is larger than the
average shear stress obtained from load cell. As

shown in Fig, 5(a), when the shear strain is larger than

1.0%, the gage shear stress (t,) is larger than the

shear stress (,) from the material constitutive law.

The difference, At, may be attributed to the

combined increasing effect of the frictional force in

the specimen-to-fixture contact region and the (radial)
compressive stress attenuated from the inner load

points. Therefore, the corrected shear moduli from

the 0°specimen are always lower than those ofthe 90°

specimen, especiallyatlargeshear strains.

Strain/stress contours and failure initiation

In the specimen test section, the longitudinal normal

strain/stress for the 0° specimen and the transverse

normal strain/stress for the 90" specimen are of neg-

ligible magnitudes due to the large longitudinal and
transverse extensional stiff'nesses for the 0* and 90 °

specimens, respectively. The strain contours in the

linear response range for 0* and 90* specimens were

discussed in Ref, 15. Figures 12 and 13 represent the
transverse normal strain/stress and shear strain/stress

contours for the 0* specimen at ys= 1,74% (non-
linear response). In the test section, the transverse

normal strains, ey, are compressive and are about
25% of the magnitude of the shear strains in the test

section. At Ys = 1.74%, ey and ey near the notch tips
and at the intersections of the notch flanks and notch

root regions are both tensile. At the intersections of

the notch flank and notch roots the cry values are
about 45 times the magnitude of those near the notch

tips while the corresponding shear stresses at the

intersections are about 90% of those near the tips,
However, the transverse normal strains, _y, at the

intersections of the notch flanks and notch roots are

about eight times the magnitude of those near the

notch tips, and the shear strains, y_y, are approxim-

ately of the same magnitude in these two regions.
Nevertheless, due to the large magnitude of the

normal stresses (or strains) at the notch flank-root
intersections, failure will initiate at the intersections of

the notch flank and notch root as observed in the

experimental studies. 13"_" Note that even if failure

initiates from the notch tips, where the transverse

normal stresses (or strains) are tensile at large shear
strains, the failure is of mixed mode.

For the 90* specimen, the longitudinal normal strain

and stress, st and e_, and shear strain and stress

contours at ys=l.10% (non-linear response) are

shown in Figs 14 and 15. The longitudinal normal

stresses, a_, at the intersections of the notch flank and
notch root are about 67% of the maximum shear

stress in the test section, while the corresponding
shear stresses at the notch flank-root intersections are
about 61% of the maximum shear stress in the test

section. In terms of strain ratio, the longitudinal
normal strains, 8,, at the intersections of the notch
flank and notch root are about 37% of the maximum

shear strain in the test section, while the correspond-
ing shear strain at the notch flank-root intersections
are about 56% of the maximum shear strain in the test

section. Due to the presence of the tensile

longitudinal normal strain/stress, the notch flank-root

intersections are the potential failure initiation points
for the 90* specimen.

CONCLUSIONS

A finite element model-for the Iosipescu composite

specimen tested in the modified Wyoming fixture
accounting for the effect of the specimen-to-fixture

contactshas been proposed. The shear responses of

the 0* and 900 specimens were simulated numerically
to failure shear strains. It was found that the

non-linear effects due to specimen geometry and
specimen-to-fixture contacts were insignificant for
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Fig. 13, (a) Shear strain and (b) shear stress contours for a 0* specimen at y_- 1-740%
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both 0* and 90* specimens, though the 00 specimen is

more sensitive to the non-linear effect. Numerical

simulation of the shear response (_s-Ys curve) for the

90* specimen agrees well with the assumed constitu-
tive behavior. However, due to the proximity of the

load points and the large longitudinal stiffness of the

00 specimen, there is an extra shear component
associated with a radial compressive stress from inner

load points. Therefore, the shear modulus (after

application of the correction factor) obtained for 0*

specimen will be lower than that for the 90 ° specimen,

In general, the measured shear response for the 90*

specimen can be regarded as the material response
after proper correction of the measured shear strains.

The normalized shear strain distributions across the

notches for specimens of IY and 90* orientations are

essentially the same In the linear and non-linear

response ranges. However, the shear stress distribu-
tions across the notches for the lY and 90* specimens

became more uniform as the applied load increases.
For calculation of the shear moduli in the non-linear

shear response regime, tangential shear moduli should
be used. To account for the effect of nonuniform

shear strain/stress fields on the calculation of the

shear moduli, correction factors (CF), defined as

CF- d_s/dt,, should be applied.
Due to the notch geometry, it was found that the

transverse normal strains/stresses for 0* specimen and

the longitudinal normal strains/stresses for 90*

specimens at the intersections of the notch flank and
notch root are tensile; thus, these locations are the

potential locations of failure initiation.

ACKNOWLEDGEMENTS

The flnanieal support of US Army Aerostructures
Directorate under NASA Langley Research Center

Research Grant NAG.l-1053 and National Science

Foundation Science ano Teclanology Center for High

Performance Polymeric Adhesives and Composites at

Virginia Tech under contract DMR 910024 is greatly

appredated,

REFERENCES

1. Pagano, N. J. & Whitney, J. M., Geometric design of
composite cylindrical characterization specimens, .L
Coop. Mater.,4 (1970)538-48.

2. Whitney,J.M., Stansbarger,D. L. & Howell,H, B.,
Analysis of the rail shear test--Application and
limitations. J. Coop. Mater., $ (1971) 24-34.

3. Petit, P. H., A simplifieil method of determining the
inplane shear stress-strain response of unidirectional
composites.ASTM STP 460,1969.pp.83-93.

4. Rosen, B. W., A dmple procedurefor experimental
determination of the longitudinal shear modulus of
unidirectional composites, 1. Coop. Mater., 6 (1972)
552-4.

365

5. Pagano, N. J. & Halpin, J. C., Influence of end
constrsint in the testing of anisotropic bodies. J. Coop.
Mater,, 2 (1) (1968) 18-31.

6. Pinden, M..r. & Herakovieh, C. T., Shear charac-
terir_tlon of unidirectional composites with the off-axis
tension test, Experimental Mechanics, 16 (1) (1986)
103-12.

7. Walralh, D. E. & Adams, D. F., The Ic_ipescu shear
test as applied to composite materials, Experimental
Mechanics, 7.3 (1) (1983) 105-10.

8. losipescu,N.,New accurateprocedureforsingleshear
testing of metals. J. Materials, 2 (3) (1967) 537-66.

9, Adams, D. F. & Walrath, D. E,, Further development
of the losipeseu shear test method, Experimental
Mechanics, _! (2) (1987) 113-19.

10. Adams, D. F. & Walrath, D. E., Current ttatus of the
Imipescu shear test method. J. Coop. Mater., 21 (6)
(1987)494-507.

11. lee, S. & Munro, M., Evaluation of in-plane shear test
methods for advanced composite materials by the
decision analysis technique. Composites, 1"/(1) (1986)
13-22.

12.Ho, H., Budiman, H. T., Tsai,M. Y., Morton, J. &
Farley, G. L., Application of notched beam specimens
for shear testing of composite materials. In Composite
Materials: Testing and Design (1/ol. 11), ed. E. T.
Camponeschi Jr. ASTM STP 1206, 1993, (in press).

13. Morton, J., Ho, H., Tsai, M. Y. & Farley, G. L., An
evaluation of the losipescu specimen for composite
materials shear property measurement. 1, Comp.
Mater., 26 (5)(1992)708-50.

14.Ho, H., T_ti,M. Y., Morton, J.& Farley,G. L. An

experimental investigation of losipescu specimen for
composite materials. Experimental Mechanics, 31 (4)
(1991) 328-37.

15. Ho, H., Tsai, M. Y., Morton, J. & Farley, G. L.,
Numerical analysisof the losipescu specimen for

composite materials. Comp, Sci. & Technol., 46 (1993)
115-25.

16. Pindera. M. J., Choksi, G., Hidde, J. S, & Herakovich,
C. T., A methodology for accurate shear characterize-
don of unidirectional composites. J. Comp. Mater., 21
(12)(1987)1164-84.

17. Kumosa, M. & Hull, D., FEM analysis of mixed mode
fracture in the Iostpescu shear test. In Proc. dth Int.
Conf. on Composite Materials/31d Eur. Conf. on
Composite Materials Vol. 3, ed. F. L. Mntthews, N. R.
C. Buskell, J. M. Hodgkinson & J. Morton. Elsevier

Applied Science, 1987, pp. 243-53.
18. Bma_es, J. A., Kumosa, M. & Hull, D. Theoretical and

experimental evaluation of the loslpeseu shear test.
Comp. SoL & Technol., 7,g (1987) 251-68.

19. Hahn, H. T. & Tsai, S. W., Nonlinear elastic behavior
of unidirectional composite laminae, J. Comp. Mater., "1

(1973)102-18.
20. Sun, C, T. &Chen, J. L,, A simpleflow rule for

characterizing nonlinear behavior of fiber composites. J.
Comp. Mater., 23 (1989) 1009-20.

21. Budiman, H. T., Ho, H., Tsai, M. Y. & Morton, J.,
Effectofspecimenlengthand notchedgeometryon the
performanceof notched shear specimen. In Proc.
AIAAIASME/ASCE/AHS/ASC 33rd Structures, Sw-
ucture Dynamics and Materials Conf., Dallas, Part 5,

1992,pp. 2905-14.
22. Zhang,Y. H., Ho, H. & Morton, J,,Shearresponseof

a hybrid glass fabric reinforced thermoplastic compos-
ite. Eur. 1. Mechan. Eng. (1992) (submitted).


